Toward Net Zero Emissions: Some Experiences from the Netherlands

Prof Zoran Kapelan

Professor of Urban Water Infrastructure

Delft University of Technology

IWA-ASPIRE, 25 Oct 2023

TUDelft

Urban Water Infrastructure

- Infrastructure covering the full urban water cycle
- Large and complex systems
- High value assets but low value of water
- Risk-averse sector with long innovation cycles
- Multiple stakeholders leading to complex decision making
- Multiple challenges

Challenges Facing Urban Water Infrastructure

- Population growth and urbanisation
- Climate change
- Sustainability concerns
- Environmental issues
- Infrastructure deterioration
- Increased user expectations
- Other

Reduction of GHG Emissions: Amsterdam

- City's target is to reduce GHG emissions by 55% until 2030 and 95% until 2050 (relative to 1990)
- Waternet has set related targets and can contribute by several means:
 - improving operational energy efficiency
 - generating electricity onsite from renewable sources
 - optimising treatment processes
 - capturing fugitive emissions
 - Many other
- Different opportunities exist but come at different costs and benefits!

Image from pixabay.com

GHG Reduction Opportunities

- Waternet identified 50 promising opportunities:
 - 25 within their own control
 - 25 other, wider opportunities
- Utility opportunities
- Wider opportunities:
 - Thermal energy
 - Water end use related
 - Life cycle opportunities

Table 1. GHG Emissions Abatement Opportunities

	utility opportunities	wider opportunities					
ID	opportunity	ID	opportunity				
S1-1	sludge drying with solar energy or residual heat	S3-1	use of calcite instead of garnet sand in drinking water softening				
S1-2	CO ₂ emissions from combustion plants are reduced by Building Management System	S3-2	use of a 5MW aquifer thermal energy storage in a data center				
S1-3	sealing sludge digestion tanks	S3-3	use of surface water as a solar energy collector to regenerate aquifer thermal energy storage systems				
S1-4	flue gas treatment of combined power-heat generators	S3-4	struvite recovery from wastewater				
S1-5	burning of N ₂ O from the waterline in the furnace of the Amsterdam Waste-to-Energy plant	\$3 - 5	use of thermal energy (heat) from wastewater to regenerate aquifer thermal energy storage systems				
S1-6	burning of CH ₄ from the waterline in the furnace of the Amsterdam Waste-to-Energy plant	S3-6	use of 20,000 shower heat exchangers in households				
S1-7	optimization of the nitrification in the wastewater treatment plants to reduce N ₂ O emissions	S3-7	use of thermal energy (heat) from drinking water to regenerate aquifer thermal energy storage systems				
S1-8	sealing sewers and use of recovered CH ₄	S3-8	use of calcite garnets from drinking water softening				
S2-1	side stream dosing of ozone in drinking water plants	S3-9	use of thermal energy (cold) from surface to regenerate aquifer thermal energy storage systems				
S2-2	supply of drinking water to water distributor by frequency- controlled pumps	S3-10	use of CO_2 from the biogas upgrading process in drinking water treatment				
S2-3	building of 5 3MW wind turbines	S3-11	use of thermal energy (cold) from drinking water to regenerate aquifer thermal energy storage systems				
S2-4	shutting down water conditioning at Loenderveen drinking water pretreatment plant	S3-12	use of thermal energy (cold) from industrial water to regenerate aquifer thermal energy storage systems				
S2-5	installation of 100,000 solar panels	S3-13	biogas production from glycol containing wastewater from Schiphol airport				
S2-6	15 additional measures 2014 in the long term energy saving program	S3-14	sludge destruction and expansion of the biogas upgrading process at the Amsterdam West wastewater treatment plant				
S2-7	7 additional measures 2016 in the long term energy saving program	\$3-15	use of thermal energy (cold) from wastewater				
S2-8	6 additional measures 2015 in the long term energy saving program	S3-16	use of thermal energy (heat) from drinking water to regenerate aquifer thermal energy storage systems				
S2-9	5 additional measures 2013 in the long term energy saving program	S3-17	regeneration of an aquifer thermal energy storage at Schiphol airport with industrial water				
S2-10	400 solar panels for heat production digestion and cooling panels	S3-18	supply of industrial water without dune passage				
S2-11	more efficient aeration at WWTPs	S3-19	use of thermal energy from a drinking water transport main to recover an aquifer thermal energy storage				
S2-12	production of drinking water and industrial water from wastewater effluent	S3-20	use lime instead of sodium hydroxide in drinking water softening				
S2-13	shut down water circulation between drinking water reservoirs	S3-21	sustainable purchase of chemicals				
S2-14	use of direct current instead of alternating current	S3-22	use of thermal energy (heat) from rainwater for room heating				
S2-15	direct treatment of drinking water without dune passage	S3-23	regeneration of activated carbon onsite				
S2-16	replacement of small polder sewers by large polder sewers	S3-24	use of grinders in households and production of CH_4				
S2-17	replacement of small sewage pumping stations by large sewage pumping stations	\$3-25	use of iron containing membrane concentrate instead of FeCl ₃ in wastewater treatment plants				

Lam. K.L. and van der Hoek, J.P., (2020), "Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities?", Environmental Science and Technology, 54, 14854-14861

Assessment of GHG Reduction Potential and Costs: Methodology

- Marginal Abatement Cost approach:
 - Estimate and plot marginal abatement costs (€/ton CO₂-eq) against abatement potential (kton CO₂-eq/year) for different opportunities
 - Prioritize opportunities based on their marginal abatement costs
- Cost based on annualised CAPEX and annualised OPEX
- Negative total annual expense indicates cost-effective options (net savings)

ID	Opportunity	Initial	Annualis	Annualised CAPEX ¹ Annualised OPEX ²		C ²	Total	Assumptions 4	Remarks	
		investments	Interest	Depreciation	Maintenance cost	Energy cost	Other operating cost	annual expense ³		
S1-1	Sludge drying with solar energy or residual heat	6,980,000	174,500	465,333	139,600	404,000	-3,286,286 (a)	-2,102,852	DY:15, MC:2%	 (a) Cost saving from less sludge disposal
S1-2	CO ₂ emissions from combustion plants are reduced by Building Management System	55,000	1,375	1,375	275	-52,800 (a)	24,000 (b)	-25,775	DY:40, MC:0.5%	(a) Natural gas saving (b) Labour cost
S1-3	Sealing sludge digestion tanks	200,000	-	-	-	-	-	-39,310 (a)	-	(a) Overall expense estimation from internal assessment
S1-4	Flue gas treatment of combined power-heat generators	0	-	-	-	-	10,000 (a)	10,000	-	(a) Using an existing facility that was not operating
S1-5	Burning of N ₂ O from the waterline in the furnace of the Amsterdam Waste-to-Energy plant	4,000,000	100,000	100,000	20,000	-	-	220,000	DY:40, MC:0.5%	-
S1-6	Burning of CH4 from the waterline in the furnace of the Amsterdam Waste-to-Energy plant	3,000,000	75,000	200,000	60,000	25,000	-	360,000	DY:15, MC:2%	-
S1-7	Optimization of the nitrification in the wastewater treatment plants to reduce N ₂ O emissions	300,000	7,500	20,000	6,000	-	-	33,500	DY:15, MC:2%	-
S1-8	Sealing sewers and use of recovered CH4	614,625,000	15,365,625	15,365,625	3,073,125	-	-	33,804,375	DY:40, MC:0.5%	-
S2-1	Side stream dosing of ozone in drinking water plants	321,530	8,038	21,435		-124,847 (a)		-95,373	DY:15	 (a) Aggregated OPEX cost from internal assessment
S2-2	Supply of drinking water to water distributor by frequency-controlled pumps	150,000	3,750	3,750	750	-31,600 (a)	-	-23,350	DY:40, MC:0.5%	(a) Purchased electricity saving
S2-3	Building of 5 3MW wind turbines	20,250,000	506,250	1,350,000	748,350 (a)	-3,613,500 (b)	-	-1,008,900	DY:15	(a) Internal communication(b) Purchased electricity saving
\$2-4	Shutting down water conditioning at Loenderveen drinking water pretreatment	0	-	-	-	-	-45,000 (a)	-45,000	-	(a) Avoided purchases of caustic soda, CO2 and oxygen

Lam. K.L. and van der Hoek, J.P., (2020), "Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities?", *Environmental Science and Technology*, 54, 14854-14861

Assessment of GHG Reduction Potential and Costs: Results

- Most cost-effective utility opportunities:
 - building of five 3 MW wind turbines (S2-3)
 - installation of 100,000 solar panels (S2-5)
 - sludge drying with solar energy or residual heat (S1-1)
- However, total abatement potential of cost-effective utility opportunities (21 kton CO2-eq/year) is much smaller than the corresponding value for wider opportunities (123 kton CO2-eq/year)
 TUDELFT

Annual abatement potential (kton CO2-eq / year)

Lam. K.L. and van der Hoek, J.P., (2020), "Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities?", *Environmental Science and Technology*, 54, 14854-14861

Assessment of GHG Reduction Potential and Costs: Results

- Most promising wider opportunities are thermal energy related:
 - use of 5 MW aquifer thermal energy storage in a data center (S3-2)
 - use of surface water as a solar energy collector to regenerate aquifer thermal energy storage systems (S3-3)

Water end use and life cycle based opportunities also have a lot of potential:

- Use of 20,000 shower heat exchangers in households (S3-6)
- Struvite recovery from wastewater (S3-4)

Annual abatement potential (kton CO2-eq / year)

Reducing Nitrogen Emissions at WWTP

- Ongoing project with KWR and Waternet
- Case study: Amsterdam West WWTP
- Aim to reduce N₂O emissions (which are much more potent than CO₂ emissions)
- Need to be able to predict N₂O emissions first
- Process based models not working well
- Al/hybrid methodology

N₂O Emissions Reduction at Waternet

Waternet 2023

Reducing GHG Emissions via Resource Recovery

- <u>EU Wider project</u> (€11M) led by SINTEF, Norway (<u>https://wider-uptake.eu</u>)
- Brings together researchers, water utilities and private industries with the aim to find <u>water smart solutions</u> based on water resources recovery <u>for circular economy</u>
- <u>Five case studies</u> in Netherlands, Norway, Italy, Czech Republic and Ghana:
 - Most focused on more traditional wastewater reuse for different type of irrigations plus biochar / struvite
 - Dutch case study different and focused on resource recovery for the production of <u>new bio-composite material</u>

Dutch case study: New Biocomposite Material

Biocomposite Material Applications

Leakage Reduction as Means of Reducing Carbon Emissions

- Water leaked needs to be pumped and treated potential for substantial GHG emissions reductions
- Each m³ of leaked water is approximately 10 kg of CO₂ emissions (USA)
- Lots of water is leaking in many countries
- Project focused on reducing leaks by detecting bursts in a timely manner:
 - <u>Aim</u>: detect and locate bursts and equipment failure events and raise alarms in near realtime
 - <u>Sensor data</u>: pressures/flows transmitted to control room every 15 minutes
 - <u>Data analytics</u> type technology
 - Bursts/leaks can be prevented this way too

AI-based Methodology

Key steps:

- Predict sensor signals for near future assuming no burst/other events
- 2. Collect evidence about a potential failure event taking place
- 3. Process evidence and raise an alarm (if necessary)

Re-train periodically as new confirmed events become available

Example

Commercial Solution

- Elements built into a commercial solution
- Successfully tested and validated, enables fast and reliable detection
- Used companywide since 2015 processing data from 7,000+ sensors
- Major operational cost saving and carbon emissions reduction

Summary

- Reducing GHG emissions remains a challenge for water industry and wider society
- Still need to develop innovative new technologies and solutions (although many already exist)
- Need to carefully prioritize the emissions reduction technologies and solutions

 We all have a role to play in getting closer to net zero future!

Thank you for your attention!

Prof. Zoran Kapelan (z.kapelan@tudelft.nl)

